Modeling Compositionality with Multiplicative Recurrent Neural Networks
نویسندگان
چکیده
We present the multiplicative recurrent neural network as a general model for compositional meaning in language, and evaluate it on the task of fine-grained sentiment analysis. We establish a connection to the previously investigated matrixspace models for compositionality, and show they are special cases of the multiplicative recurrent net. Our experiments show that these models perform comparably or better than Elman-type additive recurrent neural networks and outperform matrix-space models on a standard fine-grained sentiment analysis corpus. Furthermore, they yield comparable results to structural deep models on the recently published Stanford Sentiment Treebank without the need for generating parse trees.
منابع مشابه
Deep Recursive Neural Networks for Compositionality in Language
Recursive neural networks comprise a class of architecture that can operate on structured input. They have been previously successfully applied to model compositionality in natural language using parse-tree-based structural representations. Even though these architectures are deep in structure, they lack the capacity for hierarchical representation that exists in conventional deep feed-forward ...
متن کاملDAG-Structured Long Short-Term Memory for Semantic Compositionality
Recurrent neural networks, particularly long short-term memory (LSTM), have recently shown to be very effective in a wide range of sequence modeling problems, core to which is effective learning of distributed representation for subsequences as well as the sequences they form. An assumption in almost all the previous models, however, posits that the learned representation (e.g., a distributed r...
متن کاملGenerating Text with Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are very powerful sequence models that do not enjoy widespread use because it is extremely difficult to train them properly. Fortunately, recent advances in Hessian-free optimization have been able to overcome the difficulties associated with training RNNs, making it possible to apply them successfully to challenging sequence problems. In this paper we demonstra...
متن کاملApplication of artificial neural networks on drought prediction in Yazd (Central Iran)
In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...
متن کاملRobust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1412.6577 شماره
صفحات -
تاریخ انتشار 2014